Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Adv Exp Med Biol ; 1407: 329-348, 2023.
Article in English | MEDLINE | ID: covidwho-2306238

ABSTRACT

Vesicular stomatitis virus (VSV) is prototype virus in the family of Rhabdoviridae. Reverse genetic platform has enabled the genetic manipulation of VSV as a powerful live viral vector. Replicating-competent VSV is constructed by replacing the original VSV glycoprotein gene with heterologous envelope genes. The resulting recombinant viruses are able to replicate in permissive cells and incorporate the foreign envelope proteins on the surface of the viral particle without changing the bullet-shape morphology. Correspondingly, the cell tropism of replicating-competent VSV is determined by the foreign envelope proteins. Replicating-competent VSVs have been successfully used for selecting critical viral receptors or host factors, screening mutants that escape therapeutic antibodies, and developing VSV-based live viral vaccines.


Subject(s)
Vesiculovirus , Viral Pseudotyping , Vesiculovirus/genetics , Vesicular stomatitis Indiana virus/genetics , Glycoproteins/genetics , Genetic Vectors/genetics , Viral Envelope Proteins/genetics
2.
Front Immunol ; 14: 1082191, 2023.
Article in English | MEDLINE | ID: covidwho-2249096

ABSTRACT

Despite recent advances in the research on oncolytic viruses (OVs), a better understanding of how to enhance their replication is key to improving their therapeutic index. Understanding viral replication is important to improve treatment outcomes based on enhanced viral spreading within the tumor milieu. The VSV-Δ51 oncolytic virus has been widely used as an anticancer agent with a high selectivity profile. In this study, we examined the role of the SARS-CoV-2 spike protein receptor-binding domain (RBD) in enhancing VSV-Δ51 viral production and oncolytic activity. To test this hypothesis, we first generated a novel VSV-Δ51 mutant that encoded the SARS-COV-2 RBD and compared viral spreading and viral yield between VSV-Δ51-RBD and VSV-Δ51 in vitro. Using the viral plaque assay, we demonstrated that the presence of the SARS-CoV-2 RBD in the VSV-Δ51 genome is associated with a significantly larger viral plaque surface area and significantly higher virus titers. Subsequently, using an ATP release-based assay, we demonstrated that the SARS-CoV-2 RBD could enhance VSV-Δ51 oncolytic activity in vitro. This observation was further supported using the B16F10 tumor model. These findings highlighted a novel use of the SARS-CoV-2 RBD as an anticancer agent.


Subject(s)
COVID-19 , Oncolytic Virotherapy , Oncolytic Viruses , Vesicular Stomatitis , Animals , Humans , SARS-CoV-2 , Carrier Proteins/metabolism , Cell Line, Tumor , COVID-19/therapy , Vesicular stomatitis Indiana virus/genetics , Oncolytic Viruses/genetics
3.
Viruses ; 14(12)2022 12 19.
Article in English | MEDLINE | ID: covidwho-2200869

ABSTRACT

Fundamental key processes in viral infection cycles generally occur in distinct cellular sites where both viral and host factors accumulate and interact. These sites are usually termed viral replication organelles, or viral factories (VF). The generation of VF is accompanied by the synthesis of viral proteins and genomes and involves the reorganization of cellular structure. Recently, rVSV-ΔG-spike (VSV-S), a recombinant VSV expressing the SARS-CoV-2 spike protein, was developed as a vaccine candidate against SARS-CoV-2. By combining transmission electron microscopy (TEM) tomography studies and immuno-labeling techniques, we investigated the infection cycle of VSV-S in Vero E6 cells. RT-real-time-PCR results show that viral RNA synthesis occurs 3-4 h post infection (PI), and accumulates as the infection proceeds. By 10-24 h PI, TEM electron tomography results show that VSV-S generates VF in multi-lamellar bodies located in the cytoplasm. The VF consists of virus particles with various morphologies. We demonstrate that VSV-S infection is associated with accumulation of cytoplasmatic viral proteins co-localized with dsRNA (marker for RNA replication) but not with ER membranes. Newly formed virus particles released from the multi-lamellar bodies containing VF, concentrate in a vacuole membrane, and the infection ends with the budding of particles after the fusion of the vacuole membrane with the plasma membrane. In summary, the current study describes detailed 3D imaging of key processes during the VSV-S infection cycle.


Subject(s)
COVID-19 , Vesicular stomatitis Indiana virus , Humans , Vesicular stomatitis Indiana virus/genetics , SARS-CoV-2 , Viral Proteins/metabolism
4.
EBioMedicine ; 82: 104203, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1966508

ABSTRACT

BACKGROUND: To investigate a vaccine technology with potential to protect against coronavirus disease 2019 (COVID-19) and reduce transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with a single vaccine dose, we developed a SARS-CoV-2 candidate vaccine using the live vesicular stomatitis virus (VSV) chimeric virus approach previously used to develop a licensed Ebola virus vaccine. METHODS: We generated a replication-competent chimeric VSV-SARS-CoV-2 vaccine candidate by replacing the VSV glycoprotein (G) gene with coding sequence for the SARS-CoV-2 Spike glycoprotein (S). Immunogenicity of the lead vaccine candidate (VSV∆G-SARS-CoV-2) was evaluated in cotton rats and golden Syrian hamsters, and protection from SARS-CoV-2 infection also was assessed in hamsters. FINDINGS: VSV∆G-SARS-CoV-2 delivered with a single intramuscular (IM) injection was immunogenic in cotton rats and hamsters and protected hamsters from weight loss following SARS-CoV-2 challenge. When mucosal vaccination was evaluated, cotton rats did not respond to the vaccine, whereas mucosal administration of VSV∆G-SARS-CoV-2 was found to be more immunogenic than IM injection in hamsters and induced immunity that significantly reduced SARS-CoV-2 challenge virus loads in both lung and nasal tissues. INTERPRETATION: VSV∆G-SARS-CoV-2 delivered by IM injection or mucosal administration was immunogenic in golden Syrian hamsters, and both vaccination methods effectively protected the lung from SARS-CoV-2 infection. Hamsters vaccinated by mucosal application of VSV∆G-SARS-CoV-2 also developed immunity that controlled SARS-CoV-2 replication in nasal tissue. FUNDING: The study was funded by Merck Sharp & Dohme, Corp., a subsidiary of Merck & Co., Inc., Rahway, NJ, USA, and The International AIDS Vaccine Initiative, Inc. (IAVI), New York, USA. Parts of this research was supported by the Biomedical Advanced Research and Development Authority (BARDA) and the Defense Threat Reduction Agency (DTRA) of the US Department of Defense.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Cricetinae , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Mesocricetus , SARS-CoV-2 , Vesicular stomatitis Indiana virus/genetics , Immunogenicity, Vaccine
5.
Cell Struct Funct ; 47(1): 43-53, 2022 Jun 25.
Article in English | MEDLINE | ID: covidwho-1910415

ABSTRACT

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has threatened human health and the global economy. Development of additional vaccines and therapeutics is urgently required, but such development with live virus must be conducted with biosafety level 3 confinement. Pseudotyped viruses have been widely adopted for studies of virus entry and pharmaceutical development to overcome this restriction. Here we describe a modified protocol to generate vesicular stomatitis virus (VSV) pseudotyped with SARS-CoV or SARS-CoV-2 spike protein in high yield. We found that a large proportion of pseudovirions produced with the conventional transient expression system lacked coronavirus spike protein at their surface as a result of inhibition of parental VSV infection by overexpression of this protein. Establishment of stable cell lines with an optimal expression level of coronavirus spike protein allowed the efficient production of progeny pseudoviruses decorated with spike protein. This improved VSV pseudovirus production method should facilitate studies of coronavirus entry and development of antiviral agents.Key words: severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, pseudovirus, vesicular stomatitis virus (VSV), spike protein.


Subject(s)
Spike Glycoprotein, Coronavirus , Vesicular stomatitis Indiana virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/biosynthesis , Vesicular stomatitis Indiana virus/metabolism
6.
Viruses ; 14(6)2022 05 24.
Article in English | MEDLINE | ID: covidwho-1911605

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as the prime challenge facing public health safety since 2019. Correspondingly, coronavirus disease 2019 (COVID-19) vaccines have been developed and administered worldwide, varying in design strategies, delivery routes, immunogenicity and protective efficacy. Here, a replication-competent vesicular stomatitis virus (VSV) vectored recombinant COVID-19 vaccine was constructed and evaluated in BALB/c mice and Syrian golden hamsters. In BALB/c mice, intramuscular (i.m.) inoculation of recombinant vaccine induced significantly higher humoral immune response than that of the intranasal (i.n.) inoculation group. Analyses of cellular immunity revealed that a Th1-biased cellular immune response was induced in i.n. inoculation group while both Th1 and Th2 T cells were activated in i.m. inoculation group. In golden hamsters, i.n. inoculation of the recombinant vaccine triggered robust humoral immune response and conferred prominent protective efficacy post-SARS-CoV-2 challenge, indicating a better protective immunity in the i.n. inoculation group than that of the i.m. inoculation group. This study provides an effective i.n.-delivered recombinant COVID-19 vaccine candidate and elucidates a route-dependent manner of this vaccine candidate in two most frequently applied small animal models. Moreover, the golden hamster is presented as an economical and convenient small animal model that precisely reflects the immune response and protective efficacy induced by replication-competent COVID-19 vaccine candidates in other SARS-CoV-2 susceptible animals and human beings, especially in the exploration of i.n. immunization.


Subject(s)
COVID-19 , Vesicular Stomatitis , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Cricetinae , Immunity , Mice , Mice, Inbred BALB C , Rodentia , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic , Vesicular stomatitis Indiana virus/genetics , Vesiculovirus/genetics
7.
Front Immunol ; 12: 788235, 2021.
Article in English | MEDLINE | ID: covidwho-1650090

ABSTRACT

The ongoing COVID-19 pandemic has resulted in global effects on human health, economic stability, and social norms. The emergence of viral variants raises concerns about the efficacy of existing vaccines and highlights the continued need for the development of efficient, fast-acting, and cost-effective vaccines. Here, we demonstrate the immunogenicity and protective efficacy of two vesicular stomatitis virus (VSV)-based vaccines encoding the SARS-CoV-2 spike protein either alone (VSV-SARS2) or in combination with the Ebola virus glycoprotein (VSV-SARS2-EBOV). Intranasally vaccinated hamsters showed an early CD8+ T cell response in the lungs and a greater antigen-specific IgG response, while intramuscularly vaccinated hamsters had an early CD4+ T cell and NK cell response. Intranasal vaccination resulted in protection within 10 days with hamsters not showing clinical signs of pneumonia when challenged with three different SARS-CoV-2 variants. This data demonstrates that VSV-based vaccines are viable single-dose, fast-acting vaccine candidates that are protective from COVID-19.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Ebolavirus/immunology , Pandemics/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Vesicular stomatitis Indiana virus/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Ebolavirus/genetics , Female , Humans , Immunogenicity, Vaccine , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Plasmids , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes/immunology , Treatment Outcome , Vero Cells , Vesicular stomatitis Indiana virus/genetics
8.
Virol Sin ; 37(2): 248-255, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1616811

ABSTRACT

Severe acute respiratory syndrome (SARS) is a highly contagious zoonotic disease caused by SARS coronavirus (SARS-CoV). Since its outbreak in Guangdong Province of China in 2002, SARS has caused 8096 infections and 774 deaths by December 31st, 2003. Although there have been no more SARS cases reported in human populations since 2004, the recent emergence of a novel coronavirus disease (COVID-19) indicates the potential of the recurrence of SARS and other coronavirus disease among humans. Thus, developing a rapid response SARS vaccine to provide protection for human populations is still needed. Spike (S) protein of SARS-CoV can induce neutralizing antibodies, which is a pivotal immunogenic antigen for vaccine development. Here we constructed a recombinant chimeric vesicular stomatitis virus (VSV) VSVΔG-SARS, in which the glycoprotein (G) gene is replaced with the SARS-CoV S gene. VSVΔG-SARS maintains the bullet-like shape of the native VSV, with the heterogeneous S protein incorporated into its surface instead of G protein. The results of safety trials revealed that VSVΔG-SARS is safe and effective in mice at a dose of 1 â€‹× â€‹106 TCID50. More importantly, only a single-dose immunization of 2 â€‹× â€‹107 TCID50 can provide high-level neutralizing antibodies and robust T cell responses to non-human primate animal models. Thus, our data indicate that VSVΔG-SARS can be used as a rapid response vaccine candidate. Our study on the recombinant VSV-vectored SARS-CoV vaccines can accumulate experience and provide a foundation for the new coronavirus disease in the future.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Animals , Antibodies, Neutralizing , Antibodies, Viral , Immunization , Immunogenicity, Vaccine , Macaca mulatta , Mice , Severe acute respiratory syndrome-related coronavirus/genetics , Spike Glycoprotein, Coronavirus , Vaccines, Synthetic/genetics , Vesicular stomatitis Indiana virus/genetics , Vesicular stomatitis Indiana virus/metabolism
9.
PLoS Pathog ; 17(12): e1010092, 2021 12.
Article in English | MEDLINE | ID: covidwho-1581718

ABSTRACT

The development of safe and effective vaccines to prevent SARS-CoV-2 infections remains an urgent priority worldwide. We have used a recombinant vesicular stomatitis virus (rVSV)-based prime-boost immunization strategy to develop an effective COVID-19 vaccine candidate. We have constructed VSV genomes carrying exogenous genes resulting in the production of avirulent rVSV carrying the full-length spike protein (SF), the S1 subunit, or the receptor-binding domain (RBD) plus envelope (E) protein of SARS-CoV-2. Adding the honeybee melittin signal peptide (msp) to the N-terminus enhanced the protein expression, and adding the VSV G protein transmembrane domain and the cytoplasmic tail (Gtc) enhanced protein incorporation into pseudotype VSV. All rVSVs expressed three different forms of SARS-CoV-2 spike proteins, but chimeras with VSV-Gtc demonstrated the highest rVSV-associated expression. In immunized mice, rVSV with chimeric S protein-Gtc derivatives induced the highest level of potent neutralizing antibodies and T cell responses, and rVSV harboring the full-length msp-SF-Gtc proved to be the superior immunogen. More importantly, rVSV-msp-SF-Gtc vaccinated animals were completely protected from a subsequent SARS-CoV-2 challenge. Overall, we have developed an efficient strategy to induce a protective response in SARS-CoV-2 challenged immunized mice. Vaccination with our rVSV-based vector may be an effective solution in the global fight against COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Vesicular stomatitis Indiana virus/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/genetics , Chlorocebus aethiops , Humans , Immunization , Mice , Mice, Inbred C57BL , Mice, Transgenic , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Viral Proteins/genetics , Viral Proteins/immunology
10.
J Virol ; 95(22): e0096621, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1561933

ABSTRACT

The high pathogenicity of SARS-CoV-2 requires it to be handled under biosafety level 3 conditions. Consequently, Spike protein-pseudotyped vectors are a useful tool to study viral entry and its inhibition, with retroviral, lentiviral (LV), and vesicular stomatitis virus (VSV) vectors the most commonly used systems. Methods to increase the titer of such vectors commonly include concentration by ultracentrifugation and truncation of the Spike protein cytoplasmic tail. However, limited studies have examined whether such a modification also impacts the protein's function. Here, we optimized concentration methods for SARS-CoV-2 Spike-pseudotyped VSV vectors, finding that tangential flow filtration produced vectors with more consistent titers than ultracentrifugation. We also examined the impact of Spike tail truncation on transduction of various cell types and sensitivity to convalescent serum neutralization. We found that tail truncation increased Spike incorporation into both LV and VSV vectors and resulted in enhanced titers but had no impact on sensitivity to convalescent serum. In addition, we analyzed the effect of the D614G mutation, which became a dominant SARS-CoV-2 variant early in the pandemic. Our studies revealed that, similar to the tail truncation, D614G independently increases Spike incorporation and vector titers, but this effect is masked by also including the cytoplasmic tail truncation. Therefore, the use of full-length Spike protein, combined with tangential flow filtration, is recommended as a method to generate high titer pseudotyped vectors that retain native Spike protein functions. IMPORTANCE Pseudotyped viral vectors are useful tools to study the properties of viral fusion proteins, especially those from highly pathogenic viruses. The Spike protein of SARS-CoV-2 has been investigated using pseudotyped lentiviral and VSV vector systems, where truncation of its cytoplasmic tail is commonly used to enhance Spike incorporation into vectors and to increase the titers of the resulting vectors. However, our studies have shown that such effects can also mask the phenotype of the D614G mutation in the ectodomain of the protein, which was a dominant variant arising early in the COVID-19 pandemic. To better ensure the authenticity of Spike protein phenotypes when using pseudotyped vectors, we recommend using full-length Spike proteins, combined with tangential flow filtration methods of concentration if higher-titer vectors are required.


Subject(s)
Genetic Vectors/physiology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Animals , Antibodies, Neutralizing/immunology , Cell Line , Genetic Vectors/genetics , Genetic Vectors/immunology , Humans , Lentivirus/genetics , Mutation , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vesicular stomatitis Indiana virus/genetics , Viral Load/genetics
11.
Microbiol Spectr ; 9(2): e0105921, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1495012

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 and has since caused a global pandemic resulting in millions of cases and deaths. Diagnostic tools and serological assays are critical for controlling the outbreak, especially assays designed to quantitate neutralizing antibody levels, considered the best correlate of protection. As vaccines become increasingly available, it is important to identify reliable methods for measuring neutralizing antibody responses that correlate with authentic virus neutralization but can be performed outside biosafety level 3 (BSL3) laboratories. While many neutralizing assays using pseudotyped virus have been developed, there have been few studies comparing the different assays to each other as surrogates for authentic virus neutralization. Here, we characterized three enzyme-linked immunosorbent assays (ELISAs) and three pseudotyped vesicular stomatitis virus (VSV) neutralization assays and assessed their concordance with authentic virus neutralization. The most accurate assays for predicting authentic virus neutralization were luciferase- and secreted embryonic alkaline phosphatase (SEAP)-expressing pseudotyped virus neutralizations, followed by green fluorescent protein (GFP)-expressing pseudotyped virus neutralization, and then the ELISAs. IMPORTANCE The ongoing COVID-19 pandemic is caused by infection with severe acute respiratory syndrome virus 2 (SARS-CoV-2). Prior infection or vaccination can be detected by the presence of antibodies in the blood. Antibodies in the blood are also considered to be protective against future infections from the same virus. The "gold standard" assay for detecting protective antibodies against SARS-CoV-2 is neutralization of authentic SARS-CoV-2 virus. However, this assay can only be performed under highly restrictive biocontainment conditions. We therefore characterized six antibody-detecting assays for their correlation with authentic virus neutralization. The significance of our research is in outlining the advantages and disadvantages of the different assays and identifying the optimal surrogate assay for authentic virus neutralization. This will allow for more accurate assessments of protective immunity against SARS-CoV-2 following infection and vaccination.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Neutralization Tests/methods , SARS-CoV-2/immunology , Adult , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Male , Middle Aged , Protein Domains/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Vesicular stomatitis Indiana virus/immunology , Vesicular stomatitis New Jersey virus/immunology
12.
J Virol ; 95(20): e0059221, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1440799

ABSTRACT

The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to dramatic economic and health burdens. Although the worldwide SARS-CoV-2 vaccination campaign has begun, exploration of other vaccine candidates is needed due to uncertainties with the current approved vaccines, such as durability of protection, cross-protection against variant strains, and costs of long-term production and storage. In this study, we developed a methyltransferase-defective recombinant vesicular stomatitis virus (mtdVSV)-based SARS-CoV-2 vaccine candidate. We generated mtdVSVs expressing SARS-CoV-2 full-length spike (S) protein, S1, or its receptor-binding domain (RBD). All of these recombinant viruses grew to high titers in mammalian cells despite high attenuation in cell culture. The SARS-CoV-2 S protein and its truncations were highly expressed by the mtdVSV vector. These mtdVSV-based vaccine candidates were completely attenuated in both immunocompetent and immunocompromised mice. Among these constructs, mtdVSV-S induced high levels of SARS-CoV-2-specific neutralizing antibodies (NAbs) and Th1-biased T-cell immune responses in mice. In Syrian golden hamsters, the serum levels of SARS-CoV-2-specific NAbs triggered by mtdVSV-S were higher than the levels of NAbs in convalescent plasma from recovered COVID-19 patients. In addition, hamsters immunized with mtdVSV-S were completely protected against SARS-CoV-2 replication in lung and nasal turbinate tissues, cytokine storm, and lung pathology. Collectively, our data demonstrate that mtdVSV expressing SARS-CoV-2 S protein is a safe and highly efficacious vaccine candidate against SARS-CoV-2 infection. IMPORTANCE Viral mRNA cap methyltransferase (MTase) is essential for mRNA stability, protein translation, and innate immune evasion. Thus, viral mRNA cap MTase activity is an excellent target for development of live attenuated or live vectored vaccine candidates. Here, we developed a panel of MTase-defective recombinant vesicular stomatitis virus (mtdVSV)-based SARS-CoV-2 vaccine candidates expressing full-length S, S1, or several versions of the RBD. These mtdVSV-based vaccine candidates grew to high titers in cell culture and were completely attenuated in both immunocompetent and immunocompromised mice. Among these vaccine candidates, mtdVSV-S induces high levels of SARS-CoV-2-specific neutralizing antibodies (Nabs) and Th1-biased immune responses in mice. Syrian golden hamsters immunized with mtdVSV-S triggered SARS-CoV-2-specific NAbs at higher levels than those in convalescent plasma from recovered COVID-19 patients. Furthermore, hamsters immunized with mtdVSV-S were completely protected against SARS-CoV-2 challenge. Thus, mtdVSV is a safe and highly effective vector to deliver SARS-CoV-2 vaccine.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vesicular stomatitis Indiana virus/genetics , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Brain/virology , COVID-19/immunology , Cell Line , Cytokine Release Syndrome/prevention & control , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Humans , Immunogenicity, Vaccine , Lung/immunology , Lung/pathology , Lung/virology , Mesocricetus , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Th1 Cells/immunology , Vaccines, Synthetic/immunology , Vesicular stomatitis Indiana virus/enzymology , Vesicular stomatitis Indiana virus/physiology , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
13.
Nat Commun ; 12(1): 4598, 2021 07 26.
Article in English | MEDLINE | ID: covidwho-1327197

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected at least 180 million people since its identification as the cause of the current COVID-19 pandemic. The rapid pace of vaccine development has resulted in multiple vaccines already in use worldwide. The contemporaneous emergence of SARS-CoV-2 'variants of concern' (VOC) across diverse geographic locales underscores the need to monitor the efficacy of vaccines being administered globally. All WHO designated VOC carry spike (S) polymorphisms thought to enable escape from neutralizing antibodies. Here, we characterize the neutralizing activity of post-Sputnik V vaccination sera against the ensemble of S mutations present in alpha (B.1.1.7) and beta (B.1.351) VOC. Using de novo generated replication-competent vesicular stomatitis virus expressing various SARS-CoV-2-S in place of VSV-G (rcVSV-CoV2-S), coupled with a clonal 293T-ACE2 + TMPRSS2 + cell line optimized for highly efficient S-mediated infection, we determine that only 1 out of 12 post-vaccination serum samples shows effective neutralization (IC90) of rcVSV-CoV2-S: B.1.351 at full serum strength. The same set of sera efficiently neutralize S from B.1.1.7 and exhibit only moderately reduced activity against S carrying the E484K substitution alone. Taken together, our data suggest that control of some emergent SARS-CoV-2 variants may benefit from updated vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Female , HEK293 Cells , Humans , Immune Sera/immunology , Male , Middle Aged , Mutation , Neutralization Tests , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Vaccination/methods , Vesicular stomatitis Indiana virus/genetics , Vesicular stomatitis Indiana virus/immunology , Virus Internalization/drug effects , Virus Replication/drug effects , Virus Replication/genetics , Virus Replication/immunology
14.
Int J Environ Res Public Health ; 18(14)2021 07 20.
Article in English | MEDLINE | ID: covidwho-1323256

ABSTRACT

Surface disinfection is part of a larger mitigation strategy to prevent the spread of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus causing coronavirus disease-2019 (COVID-19). Research evaluating the time, nature, and extent of surface disinfection of replication-competent viruses is needed. We evaluated the efficacy of two disinfectants against a replication-competent SARS-CoV-2 surrogate on three common public surfaces. Vesicular stomatitis virus expressing green fluorescent protein (VSV-GFP) was our replication-competent SARS-CoV-2 surrogate. Disinfection occurred using Super Sani-Cloth Germicidal Disposable Wipes and Oxivir Tb spray per manufacturer instructions to test the efficacy at reducing the presence, viability, and later replication of VSV-GFP on stainless steel, laminate wood, and porcelain surfaces using standardized methods after recovery and toxicity testing. During the main trials, we placed 100 µL spots of VSV-GFP at viral titers of 108, 107, and 106 PFU/mL on each surface prior to disinfection. Trials were completed in triplicate and post-disinfection measurements on each surface were compared to the measurements of non-disinfected surfaces. Disinfectants were considered efficacious when ≥3-log10 reduction in the number of infectious VSV-GFP virus units was observed on a given surface during all trials. Both disinfectants produced a ≥3.23-log10 reduction in infectious VSV-GFP virus unit numbers, with all trials showing no viable, replication-competent VSV-GFP present on any tested surface. The two disinfectants eliminated the presence, viability, and later replication of VSV-GFP, our SARS-CoV-2 surrogate, on all surfaces. This information suggests that, if following manufacturer instructions, overcleaning surfaces with multiple disinfectant solutions may be unnecessary.


Subject(s)
COVID-19 , Disinfectants , Vesicular Stomatitis , Animals , Disinfectants/pharmacology , Humans , SARS-CoV-2 , Vesicular stomatitis Indiana virus
15.
J Vis Exp ; (172)2021 06 05.
Article in English | MEDLINE | ID: covidwho-1278530

ABSTRACT

As the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, it has become evident that the presence of neutralizing antibodies against the virus may provide protection against future infection. Thus, as the creation and translation of effective COVID-19 vaccines continues at an unprecedented speed, the development of fast and effective methods to measure neutralizing antibodies against SARS-CoV-2 will become increasingly important to determine long-term protection against infection for both previously infected and immunized individuals. This paper describes a high-throughput protocol using vesicular stomatitis virus (VSV) pseudotyped with the SARS-CoV-2 spike protein to measure the presence of neutralizing antibodies in convalescent serum from patients who have recently recovered from COVID-19. The use of a replicating pseudotyped virus eliminates the necessity for a containment level 3 facility required for SARS-CoV-2 handling, making this protocol accessible to virtually any containment level 2 lab. The use of a 96-well format allows for many samples to be run at the same time with a short turnaround time of 24 h.


Subject(s)
Antibodies, Neutralizing/analysis , Antibodies, Viral/analysis , COVID-19 Serological Testing/methods , COVID-19/immunology , Optical Imaging/methods , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Vaccines/immunology , Humans , Neutralization Tests , Vesicular stomatitis Indiana virus/immunology
16.
STAR Protoc ; 2(1): 100356, 2021 03 19.
Article in English | MEDLINE | ID: covidwho-1062653

ABSTRACT

This protocol enables the testing of drugs against infection of epithelial cells with SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), using pseudo-typed replication deficient vesicular stomatitis virus particles (pp-VSV) presenting the SARS-CoV-2 spike protein. After treating human volunteers with amitriptyline, an approved antidepressant and inhibitor of the acid sphingomyelinase, freshly isolated nasal epithelial cells were infected ex vivo and infection levels were quantified. This protocol offers the possibility to rapidly test the efficacy of potential drugs in the fight against COVID-19. For complete details on the use and execution of this protocol, please refer to Carpinteiro et al. (2020).


Subject(s)
Antiviral Agents/pharmacology , COVID-19/prevention & control , Drug Evaluation, Preclinical/methods , SARS-CoV-2/drug effects , Sphingolipids/metabolism , Cell Culture Techniques , Cells, Cultured , Epithelial Cells/cytology , Humans , Nasal Mucosa/cytology , Spike Glycoprotein, Coronavirus , Vesicular stomatitis Indiana virus
17.
Virol J ; 18(1): 16, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1059645

ABSTRACT

BACKGROUND: SARS-CoV-2 is a novel coronavirus that emerged in 2019 and is now classified in the genus Coronavirus with closely related SARS-CoV. SARS-CoV-2 is highly pathogenic in humans and is classified as a biosafety level (BSL)-3 pathogen, which makes manipulating it relatively difficult due to its infectious nature. METHODS: To circumvent the need for BSL-3 laboratories, an alternative assay was developed that avoids live virus and instead uses a recombinant VSV expressing luciferase and possesses the full length or truncated spike proteins of SARS-CoV-2. Furthermore, to measure SARS-CoV-2 neutralizing antibodies under BSL2 conditions, a chemiluminescence reduction neutralization test (CRNT) for SARS-CoV-2 was developed. The neutralization values of the serum samples collected from hospitalized patients with COVID-19 or SARS-CoV-2 PCR-negative donors against the pseudotyped virus infection evaluated by the CRNT were compared with antibody titers determined from an enzyme-linked immunosorbent assay (ELISA) or an immunofluorescence assay (IFA). RESULTS: The CRNT, which used whole blood collected from hospitalized patients with COVID-19, was also examined. As a result, the inhibition of pseudotyped virus infection was specifically observed in both serum and whole blood and was also correlated with the results of the IFA. CONCLUSIONS: In conclusion, the CRNT for COVID-19 is a convenient assay system that can be performed in a BSL-2 laboratory with high specificity and sensitivity for evaluating the occurrence of neutralizing antibodies against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/blood , COVID-19 Serological Testing/methods , COVID-19/blood , Neutralization Tests/methods , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vesicular stomatitis Indiana virus/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , Cell Line , Convalescence , Humans , Inhibitory Concentration 50 , Luminescence , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
18.
Viruses ; 12(12)2020 12 18.
Article in English | MEDLINE | ID: covidwho-1024652

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the most recent global pandemic that has caused more than a million deaths around the world. The spike glycoprotein (S) drives the entry and fusion of this virus and is the main determinant of cell tropism. To explore S requirements for entry under BSL2 conditions, S has been pseudotyped onto vesicular stomatitis virus (VSV) or retroviral particles with varied success. Several alterations to S were demonstrated to improve pseudoparticle titers, but they have not been systematically compared. In this study, we produced pseudotyped VSV particles with multiple modifications to S, including truncation, mutation, and tagging strategies. The main objective of this study was to determine which modifications of the S protein optimize cell surface expression, incorporation into pseudotyped particles, and pseudoparticle entry. Removal of the last 19 residues of the cytoplasmic tail produced a hyper-fusogenic S, while removal of 21 residues increased S surface production and VSV incorporation. Additionally, we engineered a replication-competent VSV (rVSV) virus to produce the S-D614G variant with a truncated cytoplasmic tail. While the particles can be used to assess S entry requirements, the rVSV∆G/SMet1D614G∆21 virus has a poor specific infectivity (particle to infectious titer ratio).


Subject(s)
SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vesicular stomatitis Indiana virus/genetics , Viral Envelope Proteins/genetics , Virus Replication , Animals , Cell Line , Cells, Cultured , Chlorocebus aethiops , Fluorescent Antibody Technique , Gene Expression , Genes, Reporter , Genetic Engineering , Giant Cells , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Vesicular stomatitis Indiana virus/metabolism , Virus Internalization
19.
Nat Commun ; 11(1): 6402, 2020 12 16.
Article in English | MEDLINE | ID: covidwho-983658

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 imposes an urgent need for rapid development of an efficient and cost-effective vaccine, suitable for mass immunization. Here, we show the development of a replication competent recombinant VSV-∆G-spike vaccine, in which the glycoprotein of VSV is replaced by the spike protein of SARS-CoV-2. In-vitro characterization of this vaccine indicates the expression and presentation of the spike protein on the viral membrane with antigenic similarity to SARS-CoV-2. A golden Syrian hamster in-vivo model for COVID-19 is implemented. We show that a single-dose vaccination results in a rapid and potent induction of SARS-CoV-2 neutralizing antibodies. Importantly, vaccination protects hamsters against SARS-CoV-2 challenge, as demonstrated by the abrogation of body weight loss, and  alleviation of the extensive tissue damage and viral loads in lungs and nasal turbinates. Taken together, we suggest the recombinant VSV-∆G-spike as a safe, efficacious and protective vaccine against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , Vesicular stomatitis Indiana virus/immunology , Animals , Antibodies, Viral/immunology , Antigens, Viral/immunology , Body Weight , COVID-19/virology , Cell Line , Cricetinae , Disease Models, Animal , Dose-Response Relationship, Immunologic , Genome, Viral , Lung/pathology , Lung/virology , Mice, Inbred C57BL , Mutation/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/ultrastructure , Vaccination , Viral Load
20.
Viruses ; 12(12)2020 12 17.
Article in English | MEDLINE | ID: covidwho-979668

ABSTRACT

Viral entry is the first stage in the virus replication cycle and, for enveloped viruses, is mediated by virally encoded glycoproteins. Viral glycoproteins have different receptor affinities and triggering mechanisms. We employed vesicular stomatitis virus (VSV), a BSL-2 enveloped virus that can incorporate non-native glycoproteins, to examine the entry efficiencies of diverse viral glycoproteins. To compare the glycoprotein-mediated entry efficiencies of VSV glycoprotein (G), Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S), Ebola (EBOV) glycoprotein (GP), Lassa (LASV) GP, and Chikungunya (CHIKV) envelope (E) protein, we produced recombinant VSV (rVSV) viruses that produce the five glycoproteins. The rVSV virions encoded a nano luciferase (NLucP) reporter gene fused to a destabilization domain (PEST), which we used in combination with the live-cell substrate EndurazineTM to monitor viral entry kinetics in real time. Our data indicate that rVSV particles with glycoproteins that require more post-internalization priming typically demonstrate delayed entry in comparison to VSV G. In addition to determining the time required for each virus to complete entry, we also used our system to evaluate viral cell surface receptor preferences, monitor fusion, and elucidate endocytosis mechanisms. This system can be rapidly employed to examine diverse viral glycoproteins and their entry requirements.


Subject(s)
Gene Expression , Genetic Vectors/genetics , Glycoproteins/genetics , Vesicular stomatitis Indiana virus/genetics , Viral Envelope Proteins/genetics , Virus Internalization , Animals , Cell Line , Chikungunya virus/genetics , Chlorocebus aethiops , Cloning, Molecular , Ebolavirus/genetics , Gene Order , Genes, Reporter , Humans , Lassa virus/genetics , SARS-CoV-2/genetics , Time Factors , Vero Cells , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL